The Kakeya Needle Problem

Paya Lebar Methodist Girls School (PLMGSS)

Done by: Tan Peng Ying
Ma Priyaatharsini Genevieve Chin Wan Qi Sharlene Tou

Why Kakeya
 Needle

 problem?

Objectives

To derive a general formula to find the area of the Besicovitch solution.

To verify does the Besicovitch's solution have a smaller region for the needle to turn in 360° compared to the Kakeya's solution .

Understanding

how the needle will turn 360° in following areas

Equilateral triangle

By Pythagoras's theorem, $1^{2}+\left(\frac{1}{2} k^{2}\right)=k^{2}$
$k=\frac{2}{\sqrt{3}}$
Area of region $=\frac{\sqrt{3}}{4} k^{2}$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4} \times \frac{2^{2}}{\sqrt{3}^{2}} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

Circle

Area of region $=\pi\left(\frac{1}{2}\right)^{2}$

$$
=\frac{\pi}{4}
$$

Reuleaux triangle

$$
\begin{aligned}
\text { Area }_{\text {segment }} & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{1}{2} r^{2}\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right) \\
& =\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) r^{2}
\end{aligned}
$$

Area equilateral traingle $=\frac{\sqrt{3}}{4} r^{2}$
Area of region $=3$ Area segment + Area $_{\text {equilateral traingle }}$

$$
\begin{aligned}
& =3\left(\frac{2 \pi-3 \sqrt{3}}{12}\right) r^{2}+\frac{\sqrt{3}}{4} r^{2} \\
& =\frac{(\pi-\sqrt{3}) r^{2}}{2} \\
& =\frac{(\pi-\sqrt{3})}{2}
\end{aligned}
$$

Proposed solutions

 Mr Kakeya: Mr Besicovitch:

Deltoid

Perron Tree

Deltoid

$$
\text { Since delt } \text { Substituting } a=\frac{3}{4}
$$

Given that a

$$
\begin{aligned}
& a^{2}=\frac{9}{16} \\
& =\frac{1}{8} \times \frac{9}{2}
\end{aligned}
$$

For a deltoic
Therefore, area of deltoid is

$$
\frac{2}{9} \pi a^{2}=\frac{\pi}{8}
$$

Besicovitch set construction

 and movement of needle
Construction of the Besicovitch

 set

Construction of the Besicovitch

 set

Construction of one Besicovitch Set

A $\underset{\text { and } 2}{\text { consists of } 1 \bigcirc} \begin{gathered}\text { Consists of } \\ 5 \text { and } 6\end{gathered}$
B $\begin{aligned} & \text { Consists of } \\ & 3 \text { and } 4\end{aligned} \quad$ D $\begin{aligned} & \text { Consists of } \\ & 7 \text { and } 8\end{aligned}$

Legend:
Length of needle
=
Height of piece 4 or 5

Mover

in one

Movement of needle

One Besicovitch Set

Area of Besicovitch Set

Let $\mathrm{x}=10$

Area of equilateral triangle
$=1 / 2 \times$ base \times perpendicular height
$=1 / 2 \times 10 \times 8.66025$
$=43.301$ (5 s.f.)

Forming of the biggest overlap for 2 pieces

Overlapping area of two pieces of

triangles

Forming of largest overlap for 2 pairs of triangles

Overlapping and leftover areas of two

 pairings of triangles

Total overlapping area for 2 pairings

$$
=14.408
$$

Total leftover area for 2 pairings
$=28.800-14.408$
$=14.391$

Forming of Besicovitch set

Overlapping and leftover areas for

Besicovitch set

Overlapping area for 1 besicovitch set
$=\left(\frac{1}{2} \times 2.32 \times 0.99\right)+(2.96 \times 0.99)$

$$
=4.0788
$$

Total Leftover area for 1 besicovitch set

$$
=14.391-4.0788
$$

$$
=10.313
$$

Forming of the Perron Tree

Overlapping and leftover areas for Perron

Tree

Total overlapping area for 3 Besicovitch sets

$$
\begin{gathered}
=\left[\left[\frac{3 \sqrt{3}}{2}(2.198)^{3}\right] \div 6\right] \times 4 \\
=8.36789
\end{gathered}
$$

Total leftover area for 3 Besicovitch sets
$=10.313 \times 3$
$=30.93866$

Area of Perron Tree

Total overlapping area for Perron Tree

$$
\begin{gathered}
=\left[\left[\frac{3 \sqrt{3}}{2}(2.198)^{3}\right] \div 6\right] \times 4 \\
=8.36789
\end{gathered}
$$

Total area for Perron Tree

$$
\begin{aligned}
& =10.313 \times 3 \\
& =30.93866
\end{aligned}
$$

Total Leftover for Perron Tree

$$
=30.93866-8.36789
$$

$$
=22.57077
$$

Movement of needle in a perron tree

COMIPARISON OF DELTOID AND PERRON TREE

DELTOID

PERRON TREE

$$
\begin{aligned}
\text { Area } & =\frac{2}{9} \pi\left(8.66 \times \frac{3}{4}\right)^{2} \\
& =29.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area $=22.5$

General Formula of Perron Tree

Since $k=$ side of equilateral triangle, $s=\frac{3 k}{2}$,
Excluding the overlapping area,
\therefore Total area of Perron Tree
$=\frac{521}{1000} \times \sqrt{s(s-k)^{3}}$
$=\frac{521}{1000} \times \sqrt{\frac{3 k}{2}\left(\frac{3 k}{2}-k\right)^{3}}$

$$
\begin{aligned}
& =\frac{521}{1000} \times \sqrt{\frac{3 k}{2}\left(\frac{k}{2}\right)^{3}} \\
& =\frac{521}{1000} \times \sqrt{\frac{3 k^{4}}{16}} \\
& =\frac{521}{1000} \times \frac{\sqrt{3} k^{2}}{4} \\
& =\frac{521 \sqrt{3} k^{2}}{4000}
\end{aligned}
$$

$521 \sqrt{3} k^{2}$
Area of Perron Tree $=\frac{5100}{4000}$

Conclusion

Area of Perron Tree < Area of deltoid
Moreover, we found that

$$
\text { Area of Perron Tree }=\frac{521 \sqrt{3} k^{2}}{4000}
$$

Limitations

- We are not able to determine the exact value of the area, as the overlapping area is generalised.
- Since the Perron tree is only enable to turn the needle 360 degrees using the parallel lines, it may not be feasible in the real world context of moving soldiers through the smallest area.

Further Extension on Research

Subdivide the perron tree into 2^{n} triangles, where $\mathrm{n}=1,2,3,4,5$ etc. (E.g. 8 triangles, 16 triangles, 32 triangles) to construct more of such trees then connect to make up a sequence of trees which can converge to something, in the limit, which has interesting properties where you can test for area zero, 0 .

THANK YOU

Q\& A

1. For needle to rotate 360^{\wedge} it must move out of set, is that practical for real life soldiers?

It depends on the space they have to rotate in, however, Mr B and many online sources have claimed that this is how the needle will have to rotate and he did think of this problem while thinking of the Japanese soldiers' movements back then.

1. Scale might be bigger, so what happens to the area of the B.set?

Ratio of map scale to actual is proportionate.

1. Why must the needle move out of the set?

MrB and online sources have stated so, the needle moving along the parallel lines take up less area for movement.

1. Parallel line extension:

To be able to move from one triangle to the other to complete a round of 180 degrees, the needle has to move out of the set to be . able to make that 'jump'. Since no area will be covered when the needle travels in a parallel line segment and causes the area of the 'jump' to be smaller when compared to just moving across to the other parallel line the needle has to move out of the set un hut it is considered to he still within the restricted narts of the set un

Q\&A

Question: why the approach in ur report cannot be also used in ur current area calculation?
In our previous report, we assume each layer has the same height, thus able to find the area of triangles, which is not true is our current construction. Each layer of triangles is not having the same height, thus not able to calculate directly using the usual formula of the area of triangle. We calculate area of different triangles of the overlapping area using Herons formula, and subtract the overlapping area from the original equilateral triangle, through using of the GSP. The new approach leads to more accurate value of the area of the besicovitch set.

